2 research outputs found

    Aeronautical design of a convertible VTOL unmanned aerial vehicle

    Get PDF
    Veículos aéreos não tripulados (VANT) conversíveis são capazes de atender missões complexas automaticamente se forem dotados de um sistema de controle de voo. O desenvolvimento de tais sistemas depende de uma plataforma de testes e validação que deve se comportar como um veículo aéreo não tripulado conversível. O projeto de tais aeronaves inclui questões únicas relativas à combinação de diferentes dinâmicas de voo, assim como questões específicas ao voo não tripulado. Este trabalho apresenta o projeto aeronáutico completo de uma aeronave não tripulada conversível que visa servir como uma plataforma de desenvolvimento de sistemas de controle de voo. A aeronave proposta é capaz de decolagem e pouso vertical e inclui dois modos de voo: asa-rotativa e asa-fixa. A aeronave é desenvolvida seguindo as três etapas clássicas de projeto aeronáutico (projeto conceitual, projeto preliminar e projeto detalhado). Uma análise conceitual é apresentada e os resultados das escolhas de projeto são analisados. Uma aeronave asa voadora tailsitter com baixa razão de aspecto, dois motores, dois ailerons e construção simplificada é proposta. A performance é analisada e características são definidas seguindo a metodologia típica de projeto aeronáutico. Os componentes da aeronave são projetados, detalhados, construídos, testados e validados. Os resultados incluem a pesquisa e desenvolvimento relativos a veículos aéreos não tripulados conversíveis, o projeto da aeronave proposta, um protótipo da aeronave, um modelo matemático e resultados de um voo inicial em malha aberta. Se concluiu que tal tipo de aeronave pode ser desenvolvida, que a performance obtida e as características de voo da aeronave proposta são aceitáveis e que o protótipo construído pode servir como plataforma de desenvolvimento de sistemas de controle de voo em trabalhos futuros.Convertible unmanned aerial vehicles (CUAV) can fulfill complex missions automatically if a flight control system is available. The development of such systems requires a platform for tests and validation that presents the same dynamic behavior of an actual CUAV. The design of such aircraft includes challenges related to the combination of different flight dynamics as well as to unmanned flight. This work presents the complete aeronautical design of a CUAV aircraft which serves as a development platform for flight control systems. The proposed design is a vertical takeoff and landing (VTOL) aircraft with two flight modes: fixed-wing and rotary-wing. The aircraft development follows the classical aeronautical design path (conceptual design, preliminary design, and detailed design). Conceptual analysis is presented and the design trade-offs are discussed. A flying-wing tailsitter aircraft with a low aspect ratio, two motors, two ailerons, and a simple build is proposed. The performance is analyzed and the aircraft characteristics are defined following the typical aircraft design methodology. The aircraft components are designed, detailed, built, tested, and validated. The results include research and development related to CUAV-VTOL design, the proposed aircraft design itself, a prototype of the design, a mathematical model, and an open-loop maiden flight. In conclusion, credible CUAV-VTOL designs are possible, the obtained performance and flight characteristics of the proposed aircraft are acceptable, and the built prototype can be used as a development platform for flight control systems in future works

    Evaluation of Altitude Sensors for a Crop Spraying Drone

    No full text
    This work aims to study and compare different range finders applied to altitude sensing on a rotating wings UAV. The specific application is the altitude maintenance for the fluid deployment valve aperture control in an unmanned pulverization aircraft used in precision agriculture. The influence of a variety of parameters are analyzed, including the tolerance for crop inconsistencies, density variations and intrinsic factors to the process, such as the pulverization fluid interference in the sensor’s readings, as well as their vulnerability to harsh conditions of the operation environment. Filtering and data extraction techniques were applied and analyzed in order to enhance the measurement reliability. As a result, a wide study was performed, enabling better decision making about choosing the most appropriate sensor for each situation under analysis. The performed data analysis was able to provide a reliable baseline to compare the sensors. With a baseline set, it was possible to counterweight the sensors errors and other factors such as the MSE for each environment to provide a summarized score of the sensors. The sensors which provided the best performance in the used metrics and tested environment were Lightware SF11-C and LeddarTech M16
    corecore